Sparse & Redundant Representation Modeling of Images: **Theory and Applications**

Michael Elad

The Computer Science Department

The Technion

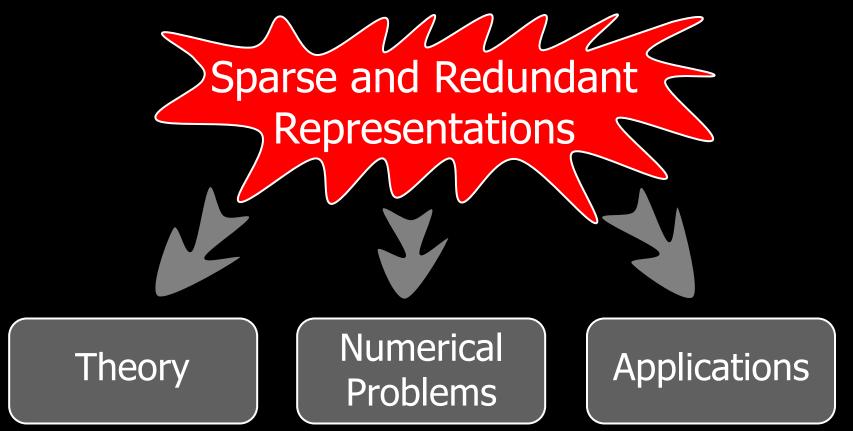
Haifa 32000, Israel

Learning sparse representations for Signal Processing February 20-22, 2015, Bangalore, India

The research leading to these results has been received funding erc from the European union's Seventh Framework Program (FP/2007-2013) ERC grant Agreement ERC-SPARSE- 320649

This Talk Gives and Overview On ...

15 years of tremendous progress in the field of



Agenda

Part I – Denoising by Sparse & Redundant Representations

Part II – Theoretical & Numerical Foundations

Part III – Dictionary Learning & The K-SVD Algorithm

Part V – Summary & Conclusions

Part IV – Back to Denoising ... and Beyond – handling stills and video denoising & inpainting, demosaicing, super-res., and compression

Sparsity and Redundancy are valuable and well-founded tools for modeling data.

When used in image processing, they lead to state-of-the-art results.

Denoising by Sparse & Redundant Representations

Noise Removal?

Our story begins with image denoising ...

- Important: (i) Practical application; (ii) A convenient platform (being the simplest inverse problem) for testing basic ideas in image processing, and then generalizing to more complex problems.
- Many Considered Directions: Partial differential equations, Statistical estimators, Adaptive filters, Inverse problems & regularization, Wavelets, Example-based techniques, Sparse representations, ...

Denoising By Energy Minimization

Many of the proposed image denoising algorithms are related to the minimization of an energy function of the form

$$f(\underline{x}) = \frac{1}{2} \|\underline{x} - \underline{y}\|_{2}^{2} + G(\underline{x})$$

$$\underbrace{f(\underline{x})}_{2} = \frac{1}{2} \|\underline{x} - \underline{y}\|_{2}^{2}$$

$$\underbrace{F(\underline{x})}_{Relation to}$$

$$\underbrace{F(\underline{x})}_{Relation to}$$

$$\underbrace{F(\underline{x})}_{Relation to}$$

$$\underbrace{F(\underline{x})}_{Relation to}$$

$$\underbrace{F(\underline{x})}_{Relation to}$$

- □ This is in-fact a Bayesian point of view, adopting the Maximum-A-posteriori Probability (MAP) estimation.
- Clearly, the wisdom in such an approach is within the choice of the prior modeling the images of interest.

Thomas Bayes 1702 - 1761

The Evolution of $G(\underline{x})$

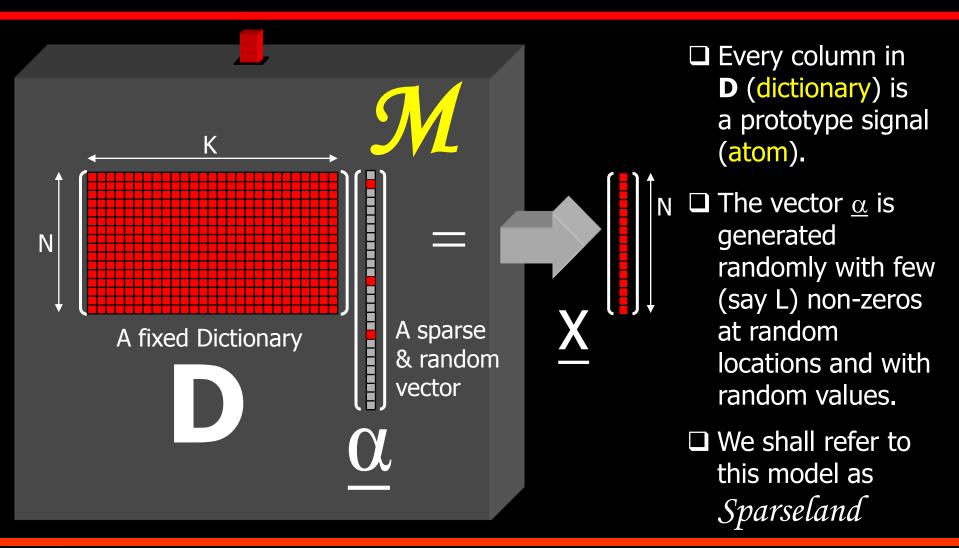
During the past several decades we have made all sort of guesses about the prior $G(\underline{x})$ for images:

$$G(\underline{x}) = \lambda \|\underline{x}\|_{2}^{2} \quad G(\underline{x}) = \lambda \|\mathbf{L}\underline{x}\|_{2}^{2} \quad G(\underline{x}) = \lambda \|\mathbf{L}\underline{x}\|_{W}^{2} \quad G(\underline{x}) = \lambda \rho \{\mathbf{L}\underline{x}\}$$

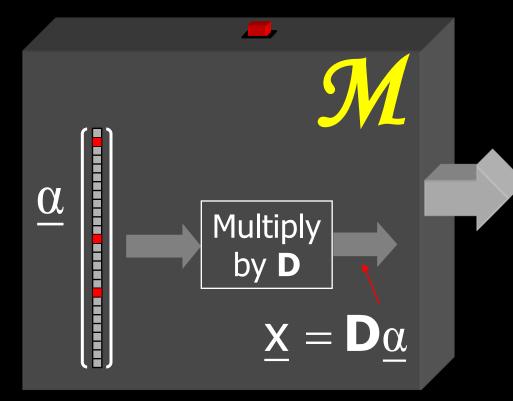
$$\widehat{\mathbf{C}} \quad \mathbf{Energy} \quad \widehat{\mathbf{Smoothness}} \quad \widehat{\mathbf{Smooth}} \quad \widehat{\mathbf{Smooth}} \quad \widehat{\mathbf{C}} \quad \mathbf{Robust}_{\mathbf{Statistics}}$$

$$G(\underline{x}) = \lambda \|\nabla\underline{x}\|_{1} \quad G(\underline{x}) = \lambda \|\mathbf{W}\underline{x}\|_{1} \quad G(\underline{x}) = \lambda \|\mathbf{W}\underline{x}\|_{1} \quad G(\underline{x}) = \lambda \|\mathbf{M}\underline{x}\|_{1} \quad \widehat{\mathbf{Sparse } \&} \quad \widehat{\mathbf{Sparse } \&}_{\mathbf{Redundant}} \quad \widehat{\mathbf{Sparse } \&}_{\mathbf{Redundant} \quad \widehat{\mathbf{Sparse } \&}_{\mathbf{Redundant}} \quad \widehat{\mathbf{Sparse } \&}_{\mathbf{Redundant} \quad \widehat{\mathbf{Sparse } \&}_{\mathbf{Redundant}} \quad \widehat{\mathbf{Sparse } \&}_{\mathbf{Redundant} \quad \widehat{\mathbf{Sparse } \&}_{\mathbf{Redundant} \quad \widehat{\mathbf{Sparse } \&}_{\mathbf{Redundant}} \quad \widehat{\mathbf{Sparse } \&}_{\mathbf$$

Sparse Modeling of Signals



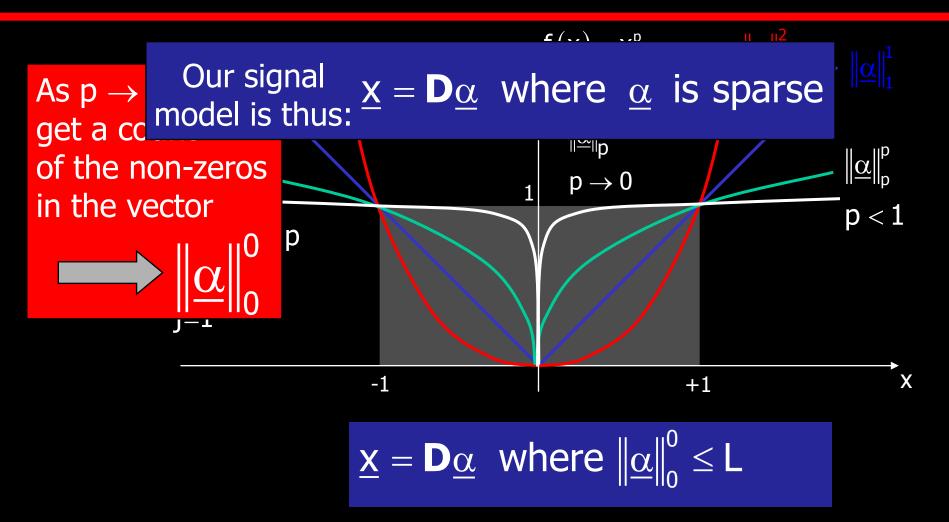
Sparseland Signals are Special



Interesting Model:

- Simple: Every generated signal is built as a linear combination of <u>few</u> atoms from our dictionary D
- Rich: A general model: the obtained signals are a union of many low-dimensional Gaussians.
- □ Familiar: We have been using this model in other context for a while now (wavelet, JPEG, ...).

Sparse & Redundant Rep. Modeling?



Back to Our MAP Energy Function

 $\left\|\frac{1}{2}\right\| \times \left\|-\frac{y}{2}\right\|_{2}^{2}$

- □ We L_0 norm is effectively counting the number of non-zeros in α .
- The vector <u>α</u> is the representation (sparse/redundant) of the desired signal x.

The core idea: while few (L out of K) atoms can be merged to form the true signal, the noise cannot be fitted well. Thus, we obtain an effective projection of the noise onto a very low-dimensional space, thus getting denoising effect.

Wait! There are Some Issues

Numerical Problems: How should we solve or approximate the solution of the problem

$$\begin{split} \min_{\underline{\alpha}} \left\| \mathbf{D}_{\underline{\alpha}} - \underline{y} \right\|_{2}^{2} \quad \text{s.t.} \quad \left\| \underline{\alpha} \right\|_{0}^{0} \leq L \quad \text{or} \quad \min_{\underline{\alpha}} \left\| \underline{\alpha} \right\|_{0}^{0} \quad \text{s.t.} \quad \left\| \mathbf{D}_{\underline{\alpha}} - \underline{y} \right\|_{2}^{2} \leq \varepsilon^{2} \\ \text{or} \quad \min_{\underline{\alpha}} \lambda \left\| \underline{\alpha} \right\|_{0}^{0} \quad + \quad \left\| \mathbf{D}_{\underline{\alpha}} - \underline{y} \right\|_{2}^{2} \quad ? \end{split}$$

□ Theoretical Problems: Is there a unique sparse representation? If we are to approximate the solution somehow, how close will we get?

Practical Problems: What dictionary D should we use, such that all this leads to effective denoising? Will all this work in applications?

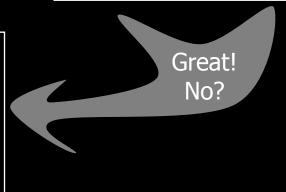
To Summarize So Far ...

Image denoising (and many other problems in image processing) requires a model for the desired image

We proposed a model for signals/images based on sparse and redundant representations

There are some issues:

- 1. Theoretical
- 2. How to approximate?
- 3. What about **D**?



Part II Theoretical & Numerical Foundations

Lets Start with the Noiseless Problem

Suppose we build a signal by the relation

$$\mathbf{D}\underline{\alpha} = \mathbf{X}$$

We aim to find the signal's representation:

$$\underline{\hat{\alpha}} = \operatorname{ArgMin}_{\underline{\alpha}} \|\underline{\alpha}\|_{0}^{0} \quad \text{s.t.} \quad \underline{\mathbf{X}} = \mathbf{D}\underline{\alpha}^{\mathsf{T}}$$

Why should we necessarily get $\hat{\underline{\alpha}} = \underline{\alpha}$?

It might happen that eventually $\|\hat{\alpha}\|_{0}^{0} < \|\underline{\alpha}\|_{0}^{0}$.

Sparse and Redundant Signal Representation, and Its Role in

Uniqueness

Known

Definition: Given a matrix **D**, σ =Spark{**D**} is the smallest number of columns that are linearly dependent.

Donoho & E. ('02)

*

Example:

In tensor decomposition, Kruskal defined something similar already in 1989.

Uniqueness Rule

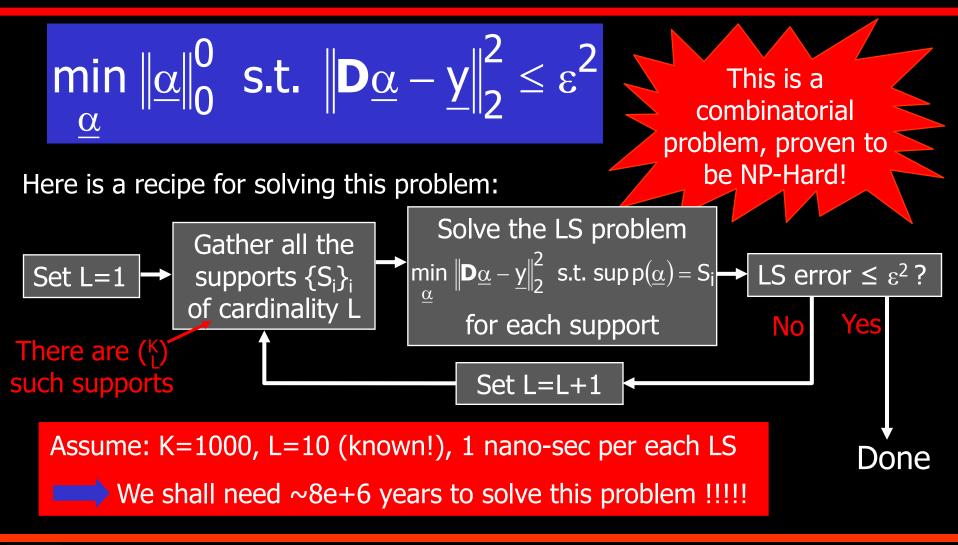
Suppose this problem has been solved somehow

$$\underline{\hat{\alpha}} = \operatorname{ArgMin}_{\underline{\alpha}} \|\underline{\alpha}\|_{0}^{0} \quad \text{s.t.} \quad \underline{\mathbf{X}} = \mathbf{D}\underline{\alpha}$$

Uniqueness If we found a representation that satisfy $\|\underline{\hat{\alpha}}\|_0 < \frac{\sigma}{2}$

Then necessarily it is unique (the sparsest).

This result implies that if \mathcal{M} generates signals using "sparse enough" $\underline{\alpha}$, the solution of the above will find it exactly.



Lets Approximate

$$\min_{\alpha} \left\|\underline{\alpha}\right\|_{0}^{0} \text{ s.t. } \left\|\underline{\mathsf{D}}\underline{\alpha}-\underline{y}\right\|_{2}^{2} \leq \varepsilon^{2}$$

Smooth the L₀ and use continuous optimization techniques

reedy methods

Greedy methods

Build the solution one non-zero element at a time

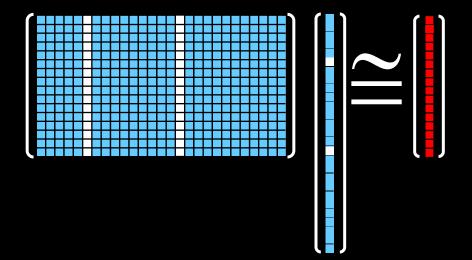
Relaxation – The Basis Pursuit (BP)

Instead of solvingSolve Instead
$$\underset{\underline{\alpha}}{\text{Min}} \| \underline{\alpha} \|_{0}^{0} \text{ s.t. } \| \underline{D} \underline{\alpha} - \underline{y} \|_{2} \le \varepsilon$$
$$\underset{\underline{\alpha}}{\text{Min}} \| \underline{\alpha} \|_{1}^{1} \text{ s.t. } \| \underline{D} \underline{\alpha} - \underline{y} \|_{2}^{1} \le \varepsilon$$

- □ This is known as the Basis-Pursuit (BP) [Chen, Donoho & Saunders ('95)].
- □ The newly defined problem is convex (quad. programming).
- □ Very efficient solvers can be deployed:
 - Interior point methods [Chen, Donoho, & Saunders ('95)] [Kim, Koh, Lustig, Boyd, & D. Gorinevsky (`07)].
 - Sequential shrinkage for union of ortho-bases [Bruce et.al. ('98)].
 - Iterative shrinkage [Figuerido & Nowak ('03)] [Daubechies, Defrise, & De-Mole ('04)] [E. ('05)] [E., Matalon, & Zibulevsky ('06)] [Beck & Teboulle (`09)] ...

Go Greedy: Matching Pursuit (MP)

- □ The MP is one of the greedy algorithms that finds one atom at a time [Mallat & Zhang ('93)].
- □ Step 1: find the one atom that best matches the signal.
- Next steps: given the previously found atoms, find the next <u>one</u> to best fit the rsidual.

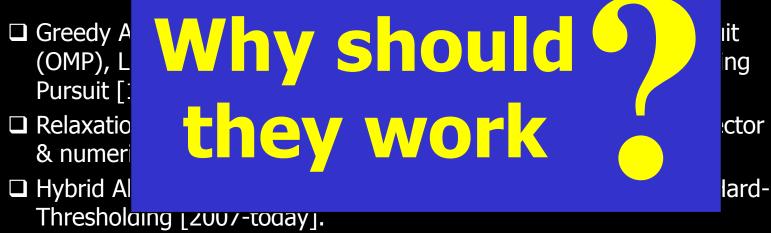


- □ The algorithm stops when the error $\|\mathbf{D}\underline{\alpha} \underline{y}\|_2$ is below the destination threshold.
- □ The Orthogonal MP (OMP) is an improved version that re-evaluates the coefficients by Least-Squares after each round.

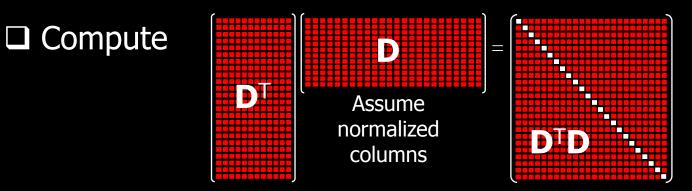
Pursuit Algorithms

$$\min_{\underline{\alpha}} \left\|\underline{\alpha}\right\|_{0}^{0} \text{ s.t. } \left\|\mathbf{D}\underline{\alpha}-\underline{y}\right\|_{2}^{2} \leq \varepsilon^{2}$$

There are various algorithms designed for approximating the solution of



The Mutual Coherence



- \Box The Mutual Coherence μ is the largest off-diagonal entry in absolute value.
- □ The Mutual Coherence is a property of the dictionary (just like the "Spark"). In fact, the following relation can be shown: 1

$$5 \ge 1 + \frac{\mu}{\mu}$$

BP and MP Equivalence (No Noise)

Equivalence Source Constant in the sparsest solution. For the sparsest solution.

- $\square \text{ MP and } BP \text{ are different in general (bard to say which is better).}$
- □ The above result corresponds to the worst-case, and as such, it is too pessimistic.
- Average performance results are available too, showing much better bounds [Donoho (`04)] [Candes et.al. ('04)] [Tanner et.al. ('05)]
 [E. ('06)] [Tropp et.al. ('06)] ... [Candes et. al. ('09)].

BP Stability for the Noisy Case

Stability

Given a signal $\underline{y} = \mathbf{D}\underline{\alpha} + \underline{v}$ with a representation satisfying $\|\underline{\alpha}\|_{0}^{0} < 1/3\mu$ and a white Gaussian noise $\underline{v} \sim N(0, \sigma^{2}\mathbf{I})$, BP will show* stability, i.e., $\|\underline{\hat{\alpha}}_{BP} - \underline{\alpha}\|_{2}^{2} < \text{Const}(\lambda) \cdot \log K \cdot \|\underline{\alpha}\|_{0}^{0} \cdot \sigma^{2}$

Ben-Haim, Eldar & E. ('09)

* With very high probability

□ For $\sigma=0$ we get $\min_{\alpha} \lambda \|\alpha\|_{1} + \|D\alpha - y\|_{2}^{2}$ =ctor,

To Summarize So Far ...

Image denoising (and many other problems in image processing) requires a model for the desired image

What

next?

We proposed a model for signals/images based on sparse and redundant representations

The Dictionary **D** should be found somehow !!! We have seen that there are approximation methods to find the sparsest solution, and there are theoretical results that guarantee their success.

Problems?

Part III Dictionary Learning: The K-SVD Algorithm

What Should **D** Be?

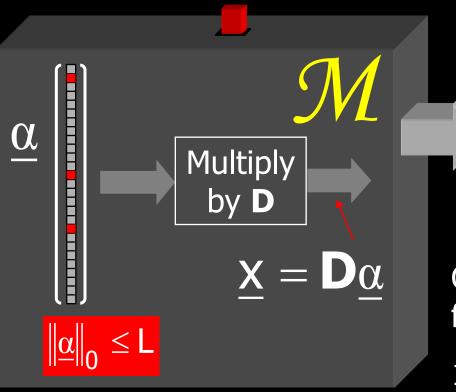
$$\hat{\underline{\alpha}} = \underset{\underline{\alpha}}{\operatorname{arg\,min}} \|\underline{\alpha}\|_{0}^{0} \quad \text{s.t.} \quad \frac{1}{2} \|\mathbf{D}\underline{\alpha} - \underline{y}\|_{2}^{2} \le \varepsilon^{2} \implies \hat{\underline{x}} = \mathbf{D}\hat{\underline{\alpha}}$$

Our Assumption: Good-behaved Images have a sparse representation

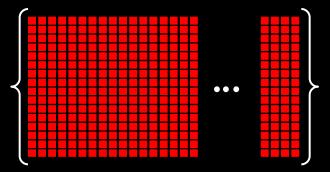
D should be chosen such that it sparsifies the representations

One approach to choose **D** is from a known set of transforms (Steerable wavelet, Curvelet, Contourlets, Bandlets, Shearlets ...) The approach we will take for building **D** is training it, based on Learning from Image Examples

Dictionary Learning: Problem Setting



$$\left\{ \begin{array}{c} X_{j} \end{array} \right\}_{j=1}^{\mathsf{P}}$$

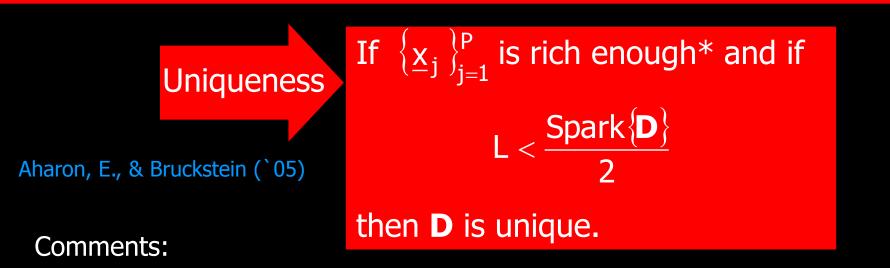


Given these P examples and a fixed size [N×K] dictionary **D**:

1. Is **D** unique?

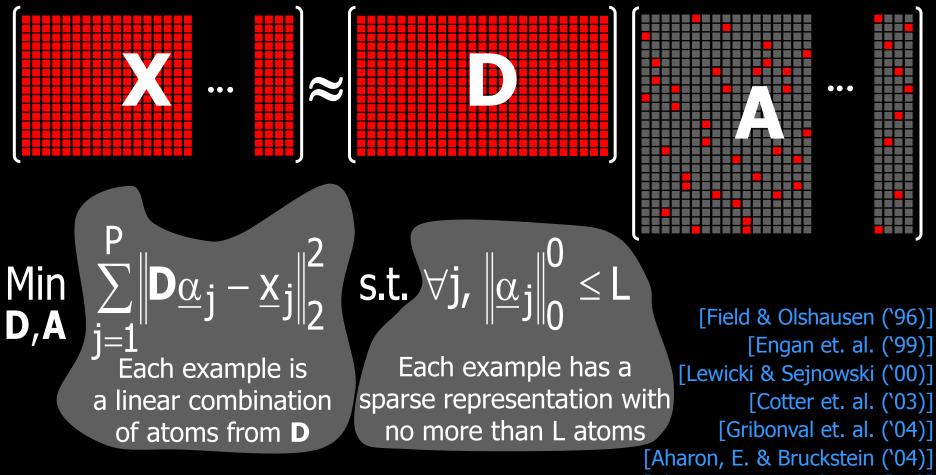
2. How would we find \mathbf{D} ?

Dictionary Learning: Uniqueness?



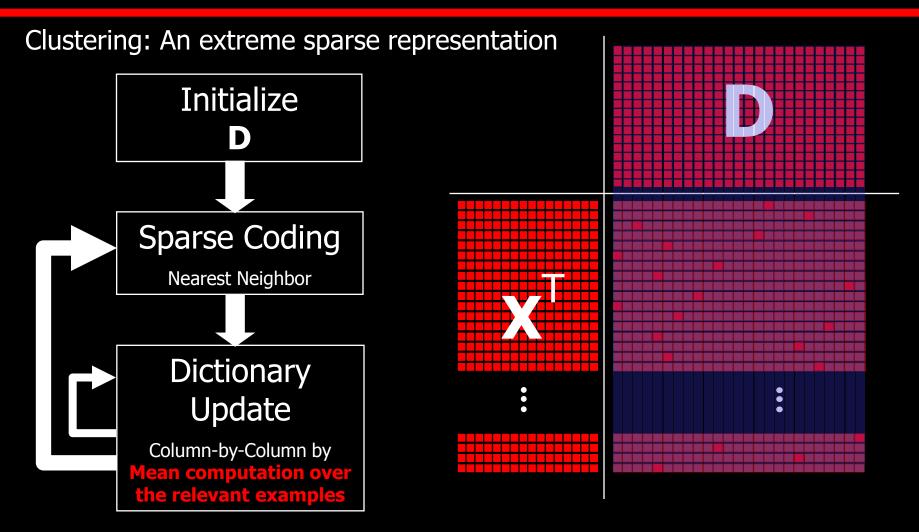
- "Rich Enough": The signals from *M* could be clustered to (^κ_L) groups that share the same support. At least L+1 examples per each are needed. More recent results (see Schnass and Wright's work) improve this dramatically.
- This result is proved constructively, but the number of examples needed to pull this off is huge we will show a far better method next.
- A parallel result that takes into account noise is yet to be constructed.

Measure of Quality for **D**

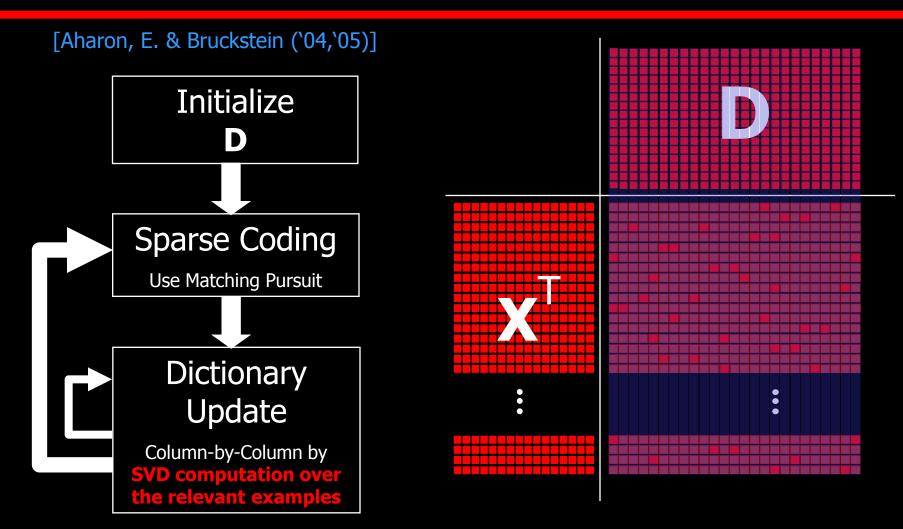


[Aharon, E. & Bruckstein ('05)]

K–Means For Clustering



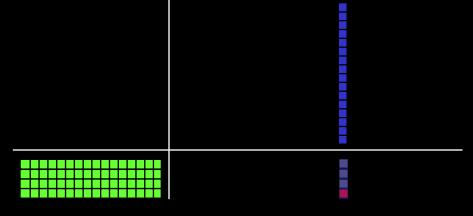
The K–SVD Algorithm – General



K–SVD: Sparse Coding Stage

Sparse and Redundant Representation Modeling of Signals – Theory and Applications By: Michael Elad

K–SVD: Dictionary Update Stage

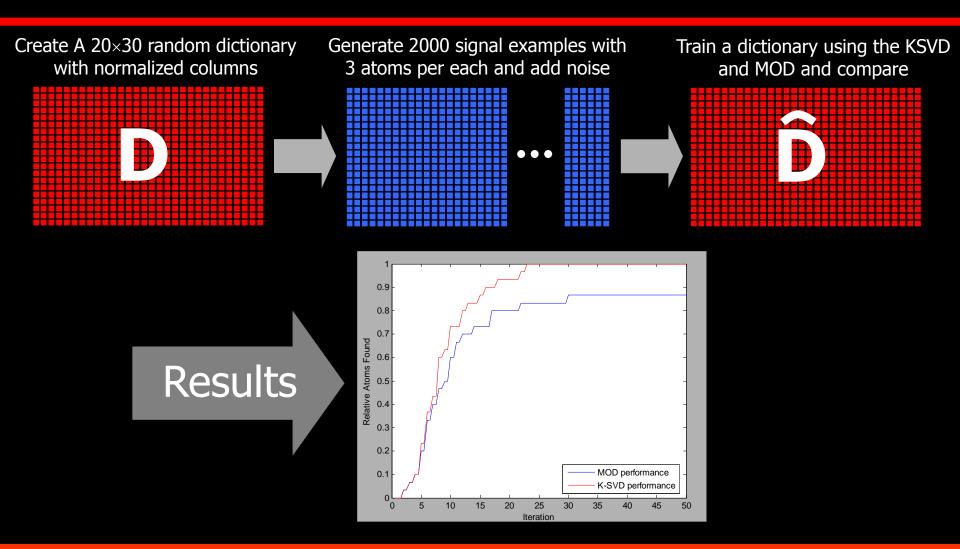


We should solve:

We refer only to the examples that use the column <u>d</u>_k

Fixing all **A** and **D** apart from the kth column, and seek both <u>d</u>_k and the kth column in **A** to better fit the **residual**!

A Synthetic Experiment



Improved Dictionary Learning

$$\begin{array}{ll} \text{Min} & \sum\limits_{j=1}^{P} \left\| \textbf{D}\underline{\alpha}_{j} - \underline{x}_{j} \right\|_{2}^{2} & \text{s.t. } \forall j, \ \left\|\underline{\alpha}_{j}\right\|_{0}^{0} \leq L \end{array}$$

MOD Algorithm

Fix **D** and update **A**

Fix **A** and update **D**

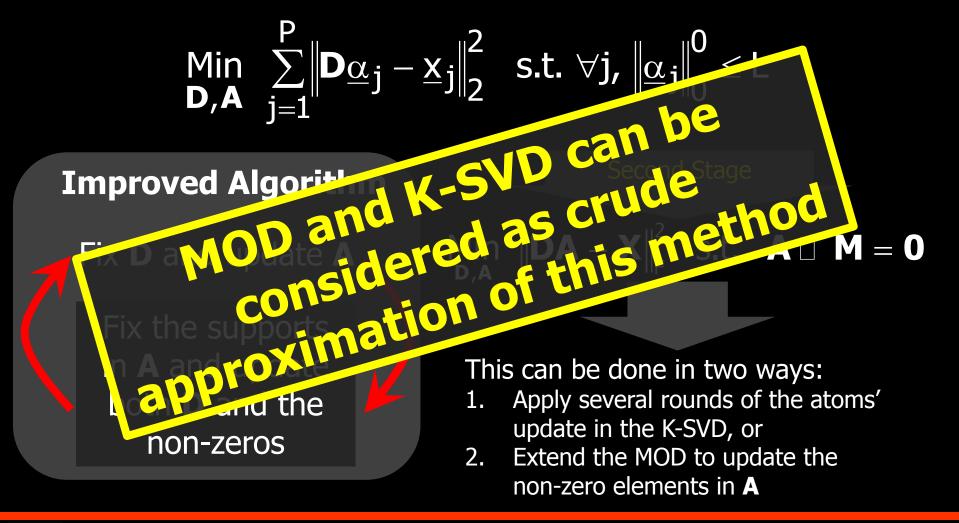
K-SVD Algorithm

Fix **D** and update **A**

for j=1:1:K

- Fix A & D apart from the j-th atom its coefficients
- Update <u>d</u>_j and its coef. in **A** end

Improved Dictionary Learning



To Summarize So Far ...

Image denoising (and many other problems in image processing) requires a model for the desired image

What

next?

We proposed a model for signals/images based on sparse and redundant representations

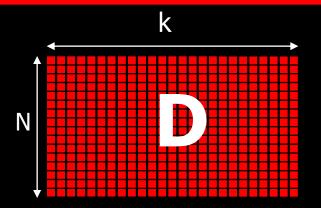
Will it all work in applications? We have seen approximation methods that find the sparsest solution, and theoretical results that guarantee their success. We also saw a way to learn **D**

Problems?

Part IV Back to Denoising ... and Beyond – Combining it All

From Local to Global Treatment

The K-SVD algorithm is reasonable for lowdimension signals (N in the range 10-400). As N grows, the complexity and the memory requirements of the K-SVD become prohibitive.



- □ So, how should large images be handled?
- □ The solution: Force shift-invariant sparsity on each patch of size N-by-N (N=8) in the image, including overlaps.

$$\hat{\underline{x}} = \underset{\underline{x}, {\underline{\alpha}_{ij}}_{ij}}{\operatorname{ArgMin}} \frac{1}{2} \left\| \underline{x} - \underline{y} \right\|_{2}^{2} + \underset{ij}{\operatorname{\mu\sum}} \left\| \underbrace{\mathsf{R}_{ij}}_{ij} \underline{x} - \mathbf{D} \underline{\alpha}_{ij} \right\|_{2}^{2}$$
Extracts a patch in the ij location in the ij location s.t.
$$\left\| \underline{\alpha}_{ij} \right\|_{0}^{0} \leq L$$
Our prior

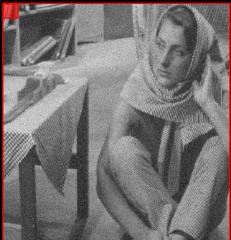
What Data to Train On?

Option 1:

- Use a database of images,
- □ We tried that, and it works fine (~0.5-1dB below the state-of-the-art).

Option 2:

- □ Use the corrupted image itself !!
- Simply sweep through all patches of size N-by-N (overlapping blocks),
- □ Image of size 1000^2 pixels → $\sim 10^6$ examples to use more than enough.
- □ This works much better!



K-SVD Image Denoising

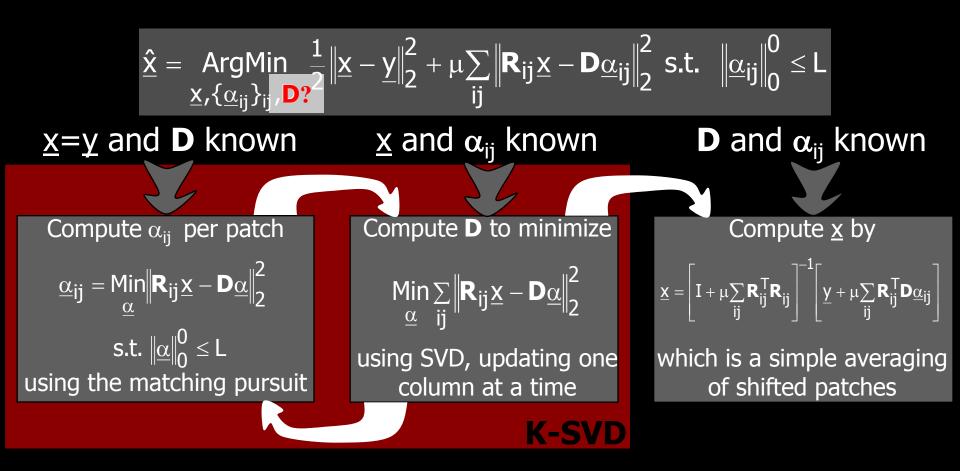
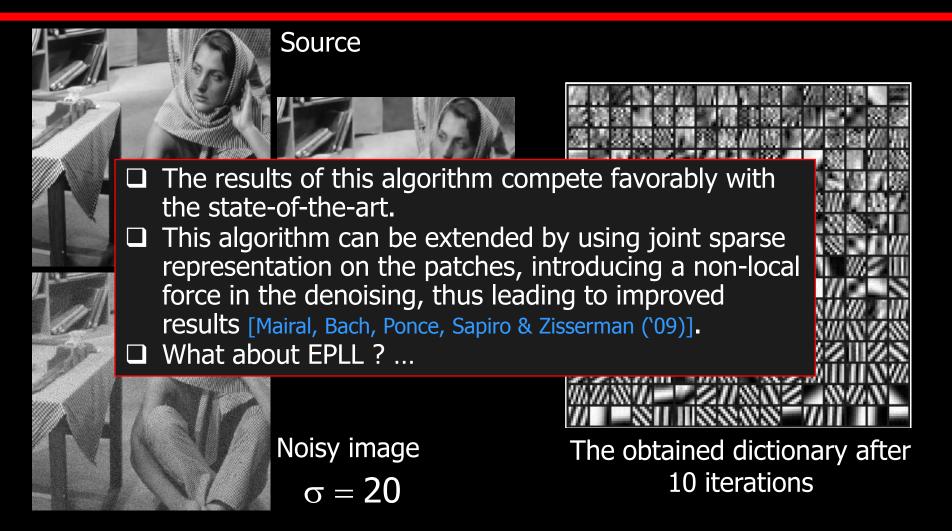


Image Denoising (Gray) [E. & Aharon ('06)]



EPLL Improvement [Sulam and E. (15)]

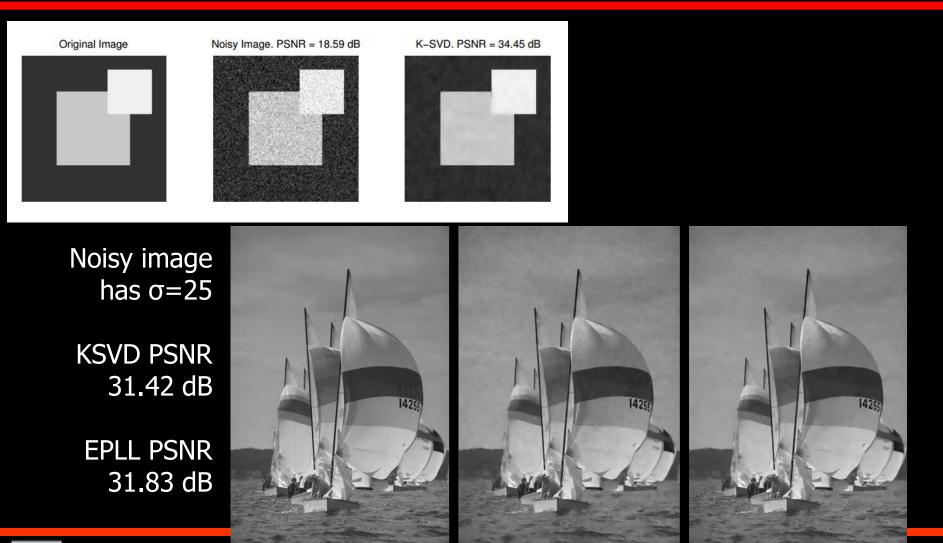
$$\hat{\underline{x}} = \underset{\underline{x}, \{\underline{\alpha}_{ij}\}_{ij}, \mathbf{D}}{\text{ArgMin}} \ \frac{1}{2} \left\| \underline{x} - \underline{y} \right\|_{2}^{2} + \mu \underset{ij}{\sum} \left\| \mathbf{R}_{ij} \underline{x} - \mathbf{D} \underline{\alpha}_{ij} \right\|_{2}^{2} \text{ s.t. } \left\| \underline{\alpha}_{ij} \right\|_{0}^{0} \leq L$$

- □ The algorithm we proposed updates <u>x</u> only once at the end.
- Why not repeat the whole process several times?
- The rationale: The sparse representation model should be imposed on the patches of the FINAL image. After averaging, this is ruined.

EPLL Improvement [Sulam and E. ('15)]

- Expected Patch Log Likelihood (EPLL) is an algorithm that came to fix this problem [Zoran and Weiss, ('11)] in the context of a GMM prior.
- □ An extension of EPLL to Spars-Land is proposed in [Sulam and E. ('15)]. The core idea is:
 - After the image has been computed, we proceed the iterative process, and apply several such overall rounds of updates.
 - Sparse coding must be done with a new threshold, based on the remaining noise in the image. This is done by evaluating the noise level based on the linear projections (disregarding the support detection by the OMP).
 - This algorithm leads to state-of-the-art results, with 0.5-1dB improvement over the regular K-SVD algorithm shown before.

EPLL Improvement [Sulam and E. ('15)]

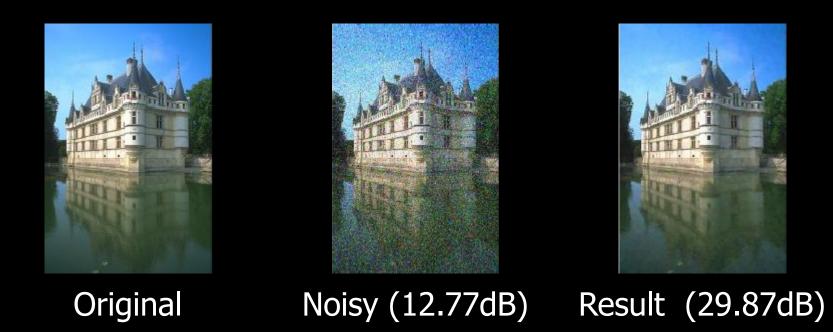


Denoising (Color) [Mairal, E. & Sapiro ('08)]

□ When turning to handle color images, the

Denoising (Color) [Mairal, E. & Sapiro ('08)]

Our experiments lead to state-of-the-art denoising results, giving ~1dB better results compared to [Mcauley et. al. ('06)] which implements a learned MRF model (Field-of-Experts)



Video Denoising [Protter & E. ('09)]

Original Noisy (σ =15) Denoised (PSNR=29.98) avoided [Buades, Col, and Morel ('06)].

Low-Dosage Tomography [Shtok, Zibulevsky & E. (10)]

- □ In Computer-Tomography (CT) reconstruction, an image is recovered from a set of its projections.
- In medicine, CT projections are obtained by X-ray, and it typically requires a high dosage of radiation in order to obtain a good quality reconstruction.
- A lower-dosage projection implies a stronger noise (Poisson distributed) in data to work with.
- □ Armed with sparse and redundant representation modeling, we can denoise the data and the final reconstruction ... enabling CT with lower dosage.

Image Inpainting – The Basics

- □ Assume: the signal <u>x</u> has been created by $\underline{x} = D\underline{\alpha}_0$ with very sparse $\underline{\alpha}_0$.
- Missing values in <u>x</u> imply missing rows in this linear system.
- □ By removing these rows, we get

$$\tilde{\mathbf{D}}\underline{\alpha} = \underline{\tilde{\mathbf{X}}}$$

☐ Now solve

$$\underset{\underline{\alpha}}{\text{Min}} \left\| \underline{\alpha} \right\|_{0} \text{ s.t. } \tilde{\underline{\mathbf{X}}} = \tilde{\mathbf{D}} \underline{\alpha}$$

If $\underline{\alpha}_0$ was sparse enough, it will be the solution of the above problem! Thus, computing $D\underline{\alpha}_0$ recovers <u>x</u> perfectly.

VÁ

 $D \alpha_0 =$

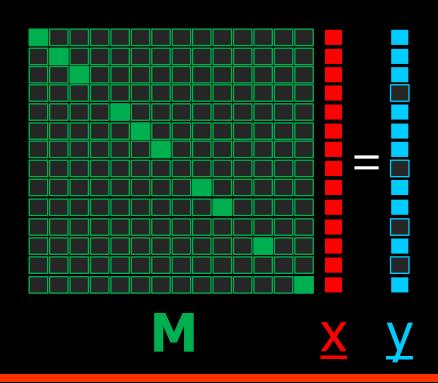
Side Note: Compressed-Sensing

- Compressed Sensing is leaning on the very same principal, leading to alternative sampling theorems.
- □ Assume: the signal <u>x</u> has been created by $\underline{x} = D\underline{\alpha}_0$ with very sparse $\underline{\alpha}_0$.
- Multiply this set of equations by the matrix Q which reduces the number of rows.
- □ The new, smaller, system of equations is
 QD<u>α</u> = QX → D<u>α</u> = X
 If <u>α</u>₀ was sparse enough, it will be the sparsest solution of the new system, thus, computing D<u>α</u>₀ recovers <u>x</u> perfectly.
- Compressed sensing focuses on conditions for this to happen, guaranteeing such recovery.

Inpainting Formulation [Mairal, E. & Sapiro ('08)]

$$\underline{\hat{x}} = \underset{\underline{x}, \{\underline{\alpha}_{ij}\}_{ij}, \mathbf{D}}{\text{ArgMin } \frac{1}{2} \left\| \underline{M}\underline{x} - \underline{y} \right\|_{2}^{2} + \mu \sum_{ij} \left\| \mathbf{R}_{ij} \underline{x} - \mathbf{D}\underline{\alpha}_{ij} \right\|_{2}^{2} \text{ s.t. } \left\| \underline{\alpha}_{ij} \right\|_{0}^{0} \leq L$$

The matrix M is a mask matrix, obtained by the identity matrix with some of its rows omitted, corresponding to the missing samples



Inpainting Formulation [Mairal, E. & Sapiro ('08)]

$$\hat{\underline{X}} = \underset{\underline{X}, \{\underline{\alpha}_{ij}\}_{ij}, \mathbf{D}}{\operatorname{Arg}} \frac{1}{2} \left\| \underline{M} \underline{X} - \underline{y} \right\|_{2}^{2} + \mu \underset{ij}{\sum} \left\| \mathbf{R}_{ij} \underline{X} - \mathbf{D} \underline{\alpha}_{ij} \right\|_{2}^{2} \text{ s.t. } \left\| \underline{\alpha}_{ij} \right\|_{0}^{0} \leq L$$

$$\underline{X} = \underline{Y} \text{ and } \mathbf{D} \text{ known} \qquad \underline{X} \text{ and } \alpha_{ij} \text{ known} \qquad \mathbf{D} \text{ and } \alpha_{ij} \text{ known}$$

$$\operatorname{Compute } \alpha_{ij} \text{ per patch} \qquad \underline{X} \text{ and } \alpha_{ij} \text{ known} \qquad \mathbf{D} \text{ and } \alpha_{ij} \text{ known}$$

$$\operatorname{Compute } \alpha_{ij} \text{ per patch} \qquad \underbrace{\operatorname{Min}_{\alpha} \left[\mathbf{M}_{ij} \left(\mathbf{R}_{ij} \underline{X} - \mathbf{D} \underline{\alpha}_{ij} \right) \right]_{2}^{2}}_{\text{s.t. } \left\| \underline{\alpha} \right\|_{0}^{0} \leq L \qquad \text{ using SVD, updating one column at a time}} \qquad \underbrace{\operatorname{Min}_{\alpha} \underline{Y} + \mu \underbrace{\operatorname{Min}_{ij}_{ij} \left[\mathbf{M}_{ij} \left(\mathbf{R}_{ij} \underline{X} - \mathbf{D} \underline{\alpha}_{ij} \right) \right]_{2}^{2}}_{\text{which is a again a simple averaging of patches}}$$

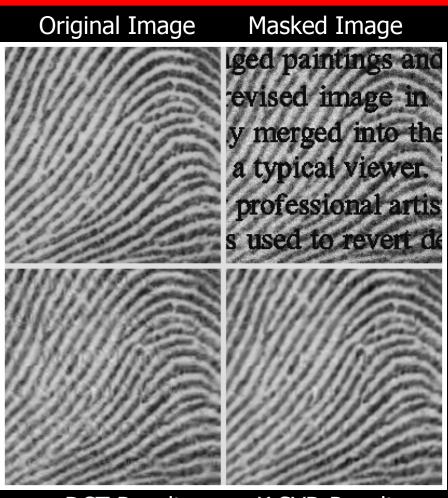
Inpainting [Mairal, E. & Sapiro ('08)]

For the Peppers image

Alg.	RMSE for 25% missing	RMSE for 50% missing	RMSE for 75% missing
No-overlap	14.55	19.61	29.70
Overlap	9.00	11.55	18.18
K-SVD	8.1	10.05	17.74

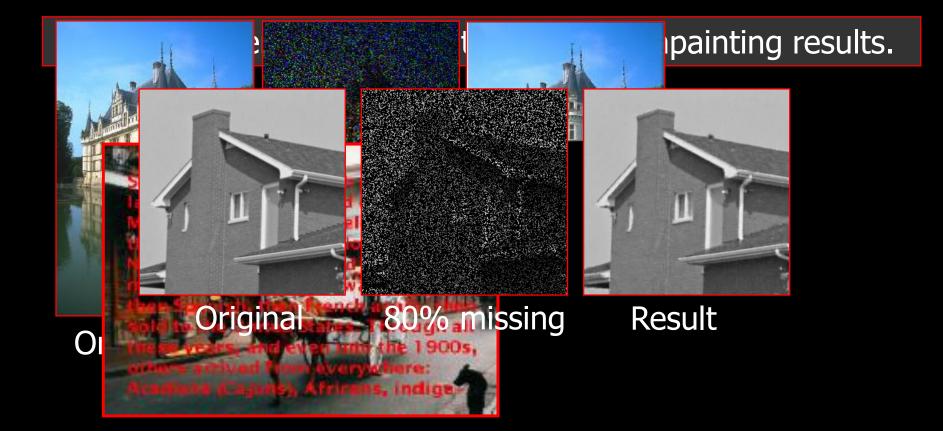
This is a more challenging case, where the DCT is not a suitable dictionary.

- For Redundant DCT we get RMSE=16.13, and
- For K-SVD (15 iterations) we get RMSE=12.74

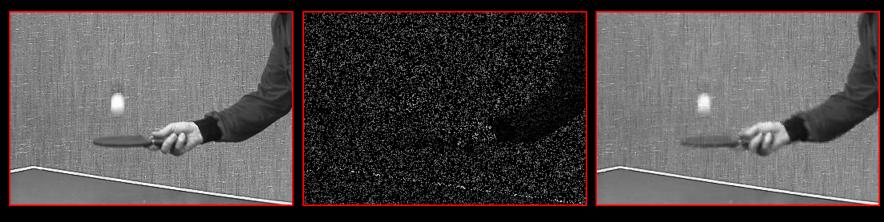


DCT Result

Inpainting [Mairal, E. & Sapiro ('08)]



The same can be done for video, very much like the denoising treatment: (i) 3D patches, (ii) no need to compute the dictionary from scratch for each frame, and (iii) no need for explicit motion estimation



Original

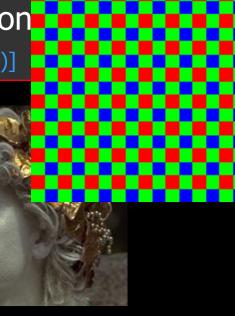
80% missing

Result

Demosaicing [Mairal, E. & Sapiro ('08)]

Our experiments lead to state-of-the-art demosaicing Today's cameras are sensing only one results, giving ~0.2dB better results on color per pixel, leaving the rest for interpolated.

Generalizing the inpainting scheme to handle demosaicing is tricky because of the possibility to learn the mosaic pattern within the dictionary.



In order to avoid "over-fitting", we handle the demosaicing problem while forcing strong sparsity and applying only few iterations.

Image Compression [Bryt and E. ('08)]

- □ The problem: Compressing photo-ID images.
- □ General purpose methods (JPEG, JPEG2000) do not take into account the specific family.
- By adapting to the image-content (PCA/K-SVD), better results could be obtained.
- For these techniques to operate well, train dictionaries locally (per patch) using a training set of images is required.
- In PCA, only the (quantized) coefficients are stored, whereas the K-SVD requires storage of the indices as well.
- Geometric alignment of the image is very helpful and should be done [Goldenberg, Kimmel, & E. ('05)].

Image Compression

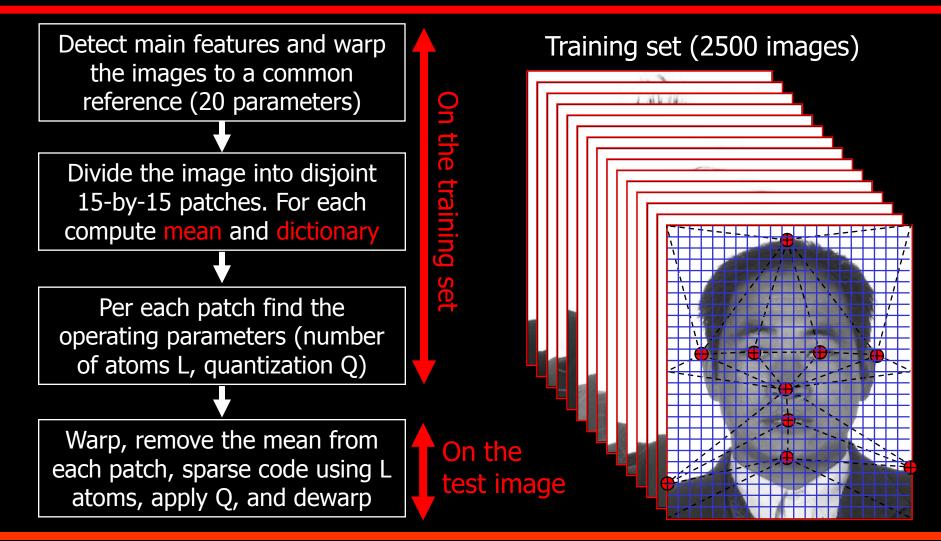


Image Compression Results

Original JPEG JPEG-2000 Local-PCA

Results for **820** Bytes per each file

Image Compression Results

Original JPEG JPEG-2000 Local-PCA

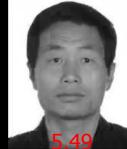


Image Compression Results

Deblocking the Results [Bryt and E. (`09)]

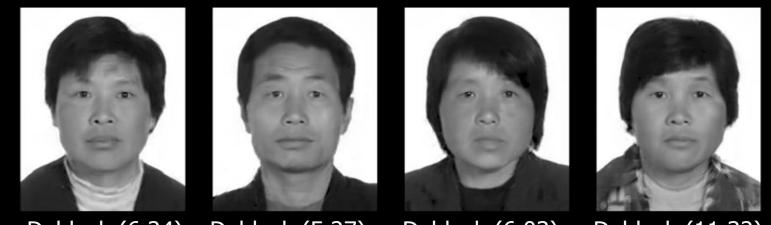
550 bytes **K-SVD** results with and without deblocking

K-SVD (6.60)

K-SVD (5.49)

K-SVD (6.45)

K-SVD (11.67)



Deblock (6.24)

Deblock (5.27)

Deblock (6.03)

Image Denoising & Beyond Via Learned Dictionaries and Sparse representations By: Michael Elad

Super-Resolution [Zeyde, Protter, & E. ('11)]

- □ Given a low-resolution image, we desire to enlarge it while producing a sharp looking result. This problem is referred to as "Single-Image Super-Resolution".
- Image scale-up using bicubic interpolation is far from being satisfactory for this task.
- Recently, a sparse and redundant representation technique was proposed [Yang, Wright, Huang, and Ma ('08)] for solving this problem, by training a coupleddictionaries for the low- and high res. images.
- We extended and improved their algorithms and results.

Super-Resolution – Results (1)

This book is about *convex optimization*, a special class of mathematical optimization problems, which includes least-squares and linear programming problems. It desis is well known that least-squares and linear programming problems have a fairly complete theory, arise in a variety of applications, and can be solved numerically very efficiently. The basic point of this book is that the same can be said for the It is larger class of convex optimization problems.

While the mathematics of convex optimization has been studied for about a century, several related recent developments have stimulated new interest in the topic. The first is the recognition that interior-point methods, developed in the 1980s to solve linear programming problems, can be used to solve convex optimiza tion problems as well. These new methods allow us to solve certain new classes of convex optimization problems, such as semidefinite programs and second-order cone programs, almost as easily as linear programs.

The second development is the discovery that convex optimization problems (beyond least-squares and linear programs) are more prevalent in practice than was previously thought. Since 1990 many applications have been discovered in areas such as automatic control systems, estimation and signal processing, communications and networks, electronic circuit design, data analysis and modeling iti. statistics, and finance. Convex optimization has also found wide application in combinatorial optimization and global optimization, where it is used to find bounds or the optimal value, as well as approximate solutions. We believe that many other applications of convex optimization are still waiting to be discovered. anoly

There are great advantages to recognizing or formulating a problem as a convex optimization problem. The most basic advantage is that the problem can then be mathe solved, very reliably and efficiently, using interior-point methods or other special designe methods for convex optimization. These solution methods are reliable enough to be modifies embedded in a computer-aided design or analysis tool, or even a real-time reactive ston ma or automatic control system. There are also theoretical or conceptual advantages of formulating a problem as a convex optimization problem. The associated dual buying

LONU-T-1000D LONG

Ideal Image

The traini

×717

An amazing variety of practical proble design, analysis, and operation) can be mization problem, or some variation such Indeed, mathematical optimization has b It is widely used in engineering, in elect trol systems, and optimal design probler and aerospace engineering. Optimization design and operation, finance, supply ch other areas. The list of applications is st

For most of these applications, mathe a human decision maker, system designer process, checks the results, and modifies when necessary. This human decision ma by the optimization problem, e.g., buyin viding portfolio.

289 training h-pairs.

Given Image

mia

Ind

Inol

and

desis

othe

a hu

proc

when

port

by

Super-Resolution – Results (2)

Scaled-Up (factor 2:1) using the proposed algorithm, PSNR=29.32dB (3.32dB improvement over bicubic)

Super-Resolution – Results (2)

The Original

Bicubic Interpolation

SR result

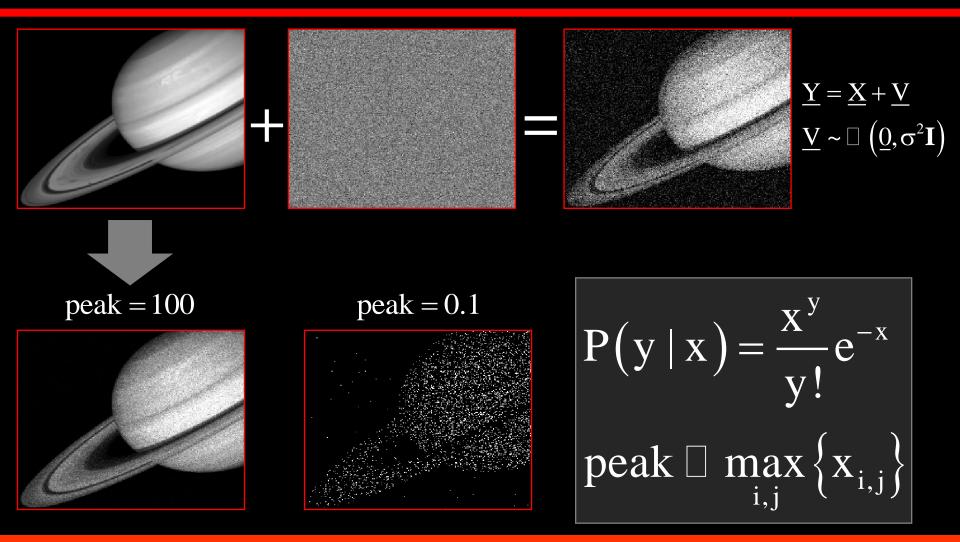
Super-Resolution – Results (2)

The Original

Bicubic Interpolation

SR result

Poisson Denoising



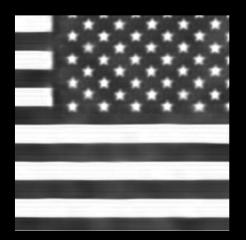
Poisson Denoising [Salmon et. al., 2011] [Giryes et. al., 2013]

- □ Anscombe transform converts Poisson distributed noise into an approximately Gaussian one, with variance 1 using the following formula [Anscombe, 1948]: $f_{Anscombe}(y) = 2\sqrt{y + \frac{3}{8}}$
- \Box However, this is of reasonable accuracy only if peak>4.
- □ For lower peaks (poor illumination), we use the patch-based approach with dictionary learning, BUT ... in the exponent domain:

$$\left\{ \underbrace{\underline{x}} = \mathbf{D}\underline{\alpha} \\ \text{where } \|\underline{\alpha}\|_{0} \leq \mathsf{L} \right\} \bigoplus \left\{ \underbrace{\underline{x}} = \exp\{\mathbf{D}\underline{\alpha}\} \\ \text{where } \|\underline{\alpha}\|_{0} \leq \mathsf{L} \right\}$$

Poisson Denoising – Results (1)

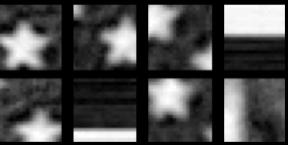
Original



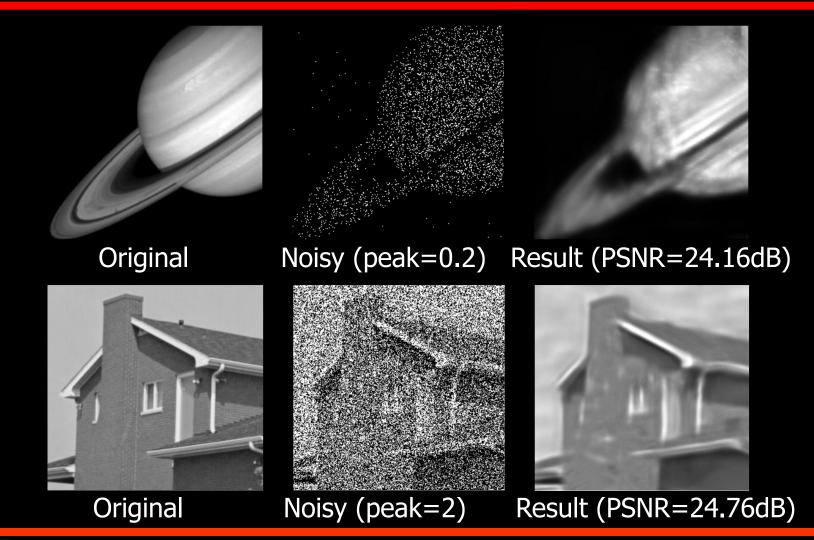
Noisy (peak=1)

Result (PSNR=22.59dB)

Dictionary learned atoms:



Poisson Denoising – Results (2)



Other Applications?

- Poisson Inpainting
- Blind deblurring
- Audio inpainting
- Dynamic MRI reconstruction
- □ Clutter reduction in Ultrasound
- □ Single image interpolation
- Anomaly detection
 -] ...

To Summarize So Far ...

Image denoising (and many other problems in image processing) requires a model for the desired image

We proposed a model for signals/images based on sparse and redundant representations

Well, does this work?

Well, many more things ... So, what next?

Yes! We have seen a group of applications where this model is showing very good results: denoising of bw/color stills/video, CT improvement, inpainting, super-resolution, and compression

Image Denoising & Beyond Via Learned Dictionaries and Sparse representations By: Michael Elad

Part V Summary and Conclusion

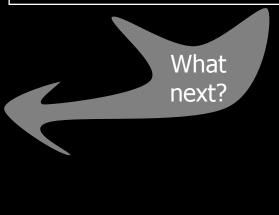
Today We Have Seen that ...

Sparsity, Redundancy, and the use of examples are important ideas that can be used in designing better tools in signal/image processing

What do we do? In our work on we cover theoretical, numerical, and applicative issues related to this model and its use in practice.

We keep working on:

- Improving the model
- □ Improving the dictionaries
- Demonstrating on other applications

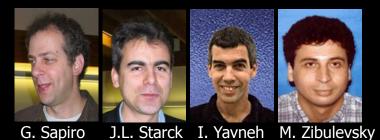


All this Work is Made Possible Due to

my teachers and mentors

A.M. Bruckstein D.L. Donoho

colleagues & friends collaborating with me



and my students

 M. Aharon
 O. Bryt
 J. Mairal
 M. Protter
 R. Rubinstein
 J. Shtok
 R. Giryes
 Z. Ben-Haim
 J. Turek
 R. Zeyde

If you are Interested

More on this topic (including the slides, the papers, and Matlab toolboxes) can be found in my webpage:

http://www.cs.technion.ac.il/~elad

A book on these topics was published in August 2010.

Applied Mathematical Sciences Michael Elad Sparse and Redundant Representations From Theory to Applications in Signal and Image Processing Springer 80

Thank You all !

More on these (including the slides and the relevant papers) can be found in http://www.cs.technion.ac.il/~elad

