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This Talk Gives and Overview On … 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

Sparse and Redundant 
Representations

15 years of tremendous progress in the field of 

Theory
Numerical 
Problems

Applications
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Agenda

Part I – Denoising
by Sparse & 
Redundant 

Representations
Part III – Dictionary Learning         

& The K-SVD Algorithm 

Part II – Theoretical & 
Numerical Foundations

Part IV – Back to Denoising … and Beyond –
handling stills and video denoising & inpainting, 

demosaicing, super-res., and compression

Part V –
Summary & 
Conclusions

 Sparsity and Redundancy are valuable and 
well-founded tools for modeling data. 

 When used in image processing, they lead 
to state-of-the-art results. 

Today we will 
show that 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Part I
Denoising by                              

Sparse & Redundant                 
Representations

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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of Signals – Theory and Applications 
By: Michael Elad

5

Noise Removal?

Our story begins with image denoising …

Remove 
Additive 

Noise ?
 Important: (i) Practical application; (ii) A convenient platform                       

(being the simplest inverse problem) for testing basic ideas in image 
processing, and then generalizing to more complex problems.

 Many Considered Directions: Partial differential equations, Statistical 
estimators, Adaptive filters, Inverse problems & regularization,          
Wavelets, Example-based techniques, Sparse representations, …
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Relation to 
measurements

Denoising By Energy Minimization 

Thomas Bayes                                    
1702 - 1761

Prior or regularization
y : Given measurements  

x : Unknown to be recovered

   
2

2

1
f x x y G x

2
  

Many of the proposed image denoising algorithms are related to the 
minimization of an energy function of the form

 This is in-fact a Bayesian point of view, adopting the 
Maximum-A-posteriori Probability (MAP) estimation.

 Clearly, the wisdom in such an approach is within the 
choice of the prior – modeling the images of interest. 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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The Evolution of G(x)

During the past several decades we have made all sort of guesses 
about the prior G(x) for images:   

• Hidden Markov Models,

• Compression algorithms as priors, 

• …

 
2

2
G x x 

Energy

 
2

2
G x x  L

Smoothness

 
2

G x x 
W

L

Adapt+ 
Smooth

   G x x  L

Robust 
Statistics

 
1

G x x  

Total-
Variation

 
1

G x x  W

Wavelet 
Sparsity

 
0

0
G x   

Sparse & 
Redundant

 Dxfor

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Sparse Modeling of Signals 

MK

N

D
A fixed Dictionary

 Every column in    
D (dictionary) is    
a prototype signal 
(atom).

 The vector  is 
generated 
randomly with few 
(say L) non-zeros 
at random 
locations and with 
random values. 

A sparse 
& random 
vector



α

x

N

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

We shall refer to 
this model as 

Sparseland
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Interesting Model:

Simple: Every generated   
signal is built as a linear 
combination of few atoms
from our dictionary D

Rich: A general model: the 
obtained signals are a union     
of many low-dimensional 
Gaussians.

Familiar: We have been  
using this model in other 
context for a while now 
(wavelet, JPEG, …).

Sparseland Signals are Special

Multiply 
by D

αDx

M
α

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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-1 +1

1

  pf x x

x

Sparse & Redundant Rep. Modeling?

k
pp

jp
j 1

  

1

1


2

2


p

p

p 1





0p

p

p





As p  0 we  
get a count         
of the non-zeros 
in the vector

0

0


x where is sparse  DOur signal  
model is thus: 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

0

0
x where L   D
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




ˆx̂

L.t.sy
2

1
minargˆ

0
0

2

2

D

D

D-y=            -

Back to Our MAP Energy Function 

 We L0 norm is effectively                                                                  
counting the number of                                                                  

non-zeros in . 

 The vector  is the                                                            
representation (sparse/redundant)                                                     
of the desired                                                                                               
signal x.

 The core idea: while few (L out of K) atoms can be merged        
to form the true signal, the noise cannot be fitted well. Thus, 
we obtain an effective projection of the noise onto a very         
low-dimensional space, thus getting denoising effect. 

x

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Wait! There are Some Issues 

 Numerical Problems: How should we solve or approximate the 
solution of the problem

or                                           

or                                    ?

 Theoretical Problems: Is there a unique sparse representation? If 
we are to approximate the solution somehow, how close will we get? 

 Practical Problems: What dictionary D should we use, such that all 
this leads to effective denoising? Will all this work in applications?

L.t.symin
0

0

2

2



D 22

2

0

0
y.t.smin 


D

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

20

0 2
min y


    D



Image Denoising & Beyond Via Learned 
Dictionaries and Sparse representations
By: Michael Elad
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To Summarize So Far …

We proposed a 
model for 

signals/images 
based on sparse 
and redundant 
representations

What do    
we do?  

Image denoising 
(and many other 

problems in image 
processing) requires 

a model for the 
desired image

Great!      
No?

There are some issues: 

1. Theoretical

2. How to approximate?

3. What about D?
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Part II
Theoretical &                   

Numerical Foundations 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad



Known 

Sparse and Redundant                    
Signal Representation, 
and Its Role in 
Image Processing
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Lets Start with the Noiseless Problem

0

0
ArgMin s.t. xˆ


    D

We aim to find the signal‟s 
representation: 

Suppose we build a signal 
by the relation 

xD

̂  Why should we necessarily get            ?

It might happen that eventually                    .
0 0

0 0
̂  

Uniqueness
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Matrix “Spark”

Rank  = 4

Spark = 3

 
 
 
 
 
 

1 0 0 0 1

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

Example:

Donoho & E. („02) 

Definition: Given a matrix D, =Spark{D} is the smallest
number of columns that are linearly dependent.

* In tensor decomposition, 
Kruskal defined something 
similar already in 1989.

*

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Uniqueness Rule

0

0
ArgMin s.t. xˆ


    D

Suppose this problem has been solved somehow

This result implies that if       generates 

signals using “sparse enough” , the 

solution of the above will find it exactly.

M

If we found a representation that satisfy 

Then necessarily it is unique (the sparsest).

0
ˆ

2


 

Uniqueness

Donoho & E. („02) 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Our Goal  

This is a 
combinatorial 

problem, proven to 
be NP-Hard! Here is a recipe for solving this problem:

Set L=1 
Gather all the 
supports {Si}i

of cardinality L   

LS error ≤ ε2 ?

22

2

0

0
y.t.smin 


D

Solve the LS problem 

for each support                                  

  i
2

2
Spsup.t.symin 


D

Set L=L+1 

There are (K) 
such supports

L

YesNo

DoneAssume: K=1000, L=10 (known!), 1 nano-sec per each LS

We shall need ~8e+6 years to solve this problem !!!!!

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Lets Approximate   

22

2

0

0
y.t.smin 


D

Greedy methods

Build the solution 
one non-zero 

element at a time

Relaxation methods

Smooth the L0 and use 
continuous optimization 

techniques

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Relaxation – The Basis Pursuit (BP)


 2

0

0
y.t.sMin D

Instead of solving


 21

y.t.sMin D

Solve Instead

 This is known as the Basis-Pursuit (BP) [Chen, Donoho & Saunders (‟95)].

 The newly defined problem is convex (quad. programming).

 Very efficient solvers can be deployed:

 Interior point methods [Chen, Donoho, & Saunders („95)] [Kim, Koh, Lustig, Boyd, & 

D. Gorinevsky (`07)].

 Sequential shrinkage for union of ortho-bases [Bruce et.al. („98)].

 Iterative shrinkage [Figuerido & Nowak („03)] [Daubechies, Defrise, & De-Mole („04)]                     

[E. („05)] [E., Matalon, & Zibulevsky („06)] [Beck & Teboulle (`09)] … 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Go Greedy: Matching Pursuit (MP)



 Next steps: given the previously 
found atoms, find the next one to 
best fit the rsidual.

 The algorithm stops when the error            is below the destination 
threshold.

 The MP is one of the greedy 
algorithms that finds one atom 
at a time [Mallat & Zhang (‟93)].

 Step 1: find the one atom that  
best matches the signal. 

 The Orthogonal MP (OMP) is an improved version that re-evaluates the 
coefficients by Least-Squares after each round.

2
yD

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Pursuit Algorithms

There are various algorithms designed for approximating the 
solution of this problem: 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

22

2

0

0
y.t.smin 


D

 Greedy Algorithms: Matching Pursuit, Orthogonal Matching Pursuit 
(OMP), Least-Squares-OMP, Weak Matching Pursuit, Block Matching 
Pursuit [1993-today].

 Relaxation Algorithms: Basis Pursuit (a.k.a. LASSO), Dnatzig Selector 
& numerical ways to handle them [1995-today].

 Hybrid Algorithms: StOMP, CoSaMP, Subspace Pursuit, Iterative Hard-
Thresholding [2007-today].

 …

Why should 
they work ?
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The Mutual Coherence

 The Mutual Coherence  is the largest off-diagonal           
entry in absolute value.

DT

=D

DTD

 Compute

 The Mutual Coherence is a property of the dictionary 
(just like the “Spark”). In fact, the following relation             
can be shown: 

  


1
1

Assume 
normalized 
columns

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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BP and MP Equivalence (No Noise)

Given a signal x with a representation            ,

assuming that                         , BP and MP   

are guaranteed to find the sparsest solution. 

x  D

    
0

0
0.5 1 1Donoho & E. („02) 

Gribonval & Nielsen („03)

Tropp („03) 

Temlyakov („03)

Equivalence

 MP and BP are different in general (hard to say which is better).

 The above result corresponds to the worst-case, and as such, it is 
too pessimistic.

 Average performance results are available too, showing much 
better bounds [Donoho (`04)] [Candes et.al. („04)] [Tanner et.al. („05)]             

[E. („06)] [Tropp et.al. („06)] … [Candes et. al. („09)]. 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

0

0
ArgMin s.t. xˆ


    D
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BP Stability for the Noisy Case 

 For =0 we get a weaker version of the previous result.

 This result is the oracle‟s error, multuiplied by C·logK.

 Similar results exist for other pursuit algorithms (Dantzig Selector, 
Orthogonal Matching Pursuit, CoSaMP, Subspace Pursuit, …)

Given a signal                with a representation

satisfying                    and a white Gaussian 

noise                   , BP will show  stability, i.e., 

  
0

0
1 / 3

Ben-Haim, Eldar & E. („09)

Stability
vy  D

2 0 2
BP 2 0

Const( ) logK̂         

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

 2v ~ N 0, I

* With very high   
probability

*

2

1 2
min y


    D



Image Denoising & Beyond Via Learned 
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To Summarize So Far …

We proposed a 
model for 

signals/images 
based on sparse 
and redundant 
representations

What do    
we do?  

Image denoising 
(and many other 

problems in image 
processing) requires 

a model for the 
desired image

We have seen that there are 
approximation methods to 
find the sparsest solution, 
and there are theoretical 

results that guarantee their 
success.

Problems?

What           
next?  

The 
Dictionary D
should be 

found 
somehow !!!
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Part III
Dictionary Learning:                         
The K-SVD Algorithm

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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


ˆx̂andy
2

1
.t.sminargˆ

22

2

0

0
DD

What Should D Be? 

Our Assumption: Good-behaved Images                                      
have a sparse representation

D should be chosen such that it sparsifies the representations

The approach we will take for 
building D is training it,   

based on Learning from          
Image Examples

One approach to choose D is from 
a known set of transforms 

(Steerable wavelet, Curvelet, 
Contourlets, Bandlets, Shearlets …)

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Dictionary Learning: Problem Setting

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

Multiply 
by D

αDx

M
α

L
0
α

Given these P examples and a 
fixed size [NK] dictionary D:

1. Is D unique?

2. How would we find D?

 P

1jjX

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Dictionary Learning: Uniqueness? 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

If            is rich enough* and if

then D is unique.

 
2

Spark
L

D


Uniqueness

Aharon, E., & Bruckstein (`05)

Comments:

M 








L

K
• “Rich Enough”: The signals from      could be clustered to     groups that 

share the same support. At least L+1 examples per each are needed. 
More recent results (see Schnass and Wright‟s work) improve this 
dramatically. 

• This result is proved constructively, but the number of examples needed 
to pull this off is huge – we will show a far better method next. 

• A parallel result that takes into account noise is yet to be constructed. 

 P

1jjx




31

Each example is                    
a linear combination                   

of atoms from D

Measure of Quality for D

DX A

Each example has a 
sparse representation with 

no more than L atoms

L,j.t.sxMin
0

0j

P

1j

2

2jj
,




D
AD [Field & Olshausen („96)]

[Engan et. al. („99)]

[Lewicki & Sejnowski („00)]

[Cotter et. al. („03)]

[Gribonval et. al. („04)]

[Aharon, E. & Bruckstein („04)] 
[Aharon, E. & Bruckstein („05)]

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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K–Means For Clustering 

DInitialize         
D

Sparse Coding
Nearest Neighbor

Dictionary 
Update

Column-by-Column by  
Mean computation over 
the relevant examples

X
T

Clustering: An extreme sparse representation  

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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The K–SVD Algorithm – General 

DInitialize         
D

Sparse Coding
Use Matching Pursuit

Dictionary 
Update

Column-by-Column by  
SVD computation over 
the relevant examples

[Aharon, E. & Bruckstein („04,„05)]

X
T

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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K–SVD: Sparse Coding Stage

D

X
T

L,j.t.sxMin
p

pj

P

1j

2

2jj  


D
A

D is known!  
For the jth item           

we solve 

L.t.sxMin
p

p

2

2j 


D

Solved by                            
A Pursuit Algorithm

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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K–SVD: Dictionary Update Stage

D
We refer only to the 

examples that use the 
column dk?dk 

Fixing all A and D apart 
from the kth column, 
and seek both dk and 
the kth column in A to 
better fit the residual!

We should solve:

2

F

T
kk

,d
dMin

kk

E


Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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A Synthetic Experiment

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

D

Create A 2030 random dictionary 
with normalized columns

Generate 2000 signal examples with 
3 atoms per each and add noise

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

R
e
la

ti
v
e
 A

to
m

s
 F

o
u
n
d

MOD performance

K-SVD performance

Results

D

Train a dictionary using the KSVD 
and MOD and compare 
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Improved Dictionary Learning  

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

L,j.t.sxMin
0

0j

P

1j

2

2jj
,




D
AD

MOD Algorithm

Fix D and 
update A

K-SVD Algorithm

Fix D and update A

Fix A and 
update D

for j=1:1:K
- Fix A & D apart from the   

j-th atom its coefficients
- Update dj and its coef. in A

end
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Improved Dictionary Learning  

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

L,j.t.sxMin
0

0j

P

1j

2

2jj
,




D
AD

Improved Algorithm

Fix D and update A

Fix the supports 
in A and update 
both D and the 

non-zeros

 
2

F,
Min s.t.
D A

DA X A M 0

Second Stage

This can be done in two ways:
1. Apply several rounds of the atoms‟ 

update in the K-SVD, or 
2. Extend the MOD to update the                 

non-zero elements in A



Image Denoising & Beyond Via Learned 
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By: Michael Elad
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To Summarize So Far …

We proposed a 
model for 

signals/images 
based on sparse 
and redundant 
representations

What do    
we do?  

Image denoising 
(and many other 

problems in image 
processing) requires 

a model for the 
desired image

We have seen approximation 
methods that find the 
sparsest solution, and 
theoretical results that 

guarantee their success. We 
also saw a way to learn D

Problems?

What           
next?  

Will it all 
work in 

applications? 
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Part IV
Back to Denoising …                 

and Beyond –
Combining it All

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Our prior

Extracts a patch 
in the ij location

 The K-SVD algorithm is reasonable for low-
dimension signals (N in the range 10-400). 
As N grows, the complexity and the memory 
requirements of the K-SVD become 
prohibitive. 

 So, how should large images be handled?

L.t.s

xyx
2

1
ArgMinx̂

0

0ij

ij

2

2ijij
2

2
}{,x ijij



 


DR

From Local to Global Treatment

DN

k

 The solution: Force shift-invariant sparsity - on each patch of size         
N-by-N (N=8) in the image, including overlaps. 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Option 1:

 Use a database of images,

 We tried that, and it works fine (~0.5-1dB                 
below the state-of-the-art). 

Option 2: 

 Use the corrupted image itself !!  

 Simply sweep through all patches of size                     
N-by-N (overlapping blocks), 

 Image of size 10002 pixels      ~106

examples to use – more than enough.

 This works much better!

What Data to Train On?

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad



Complexity of this algorithm: O(N2×K×L×Iterations) per pixel. For N=8, 

L=1, K=256, and 10 iterations, we need 160,000 (!!) operations per pixel.
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K-SVD

L.t.sxyxArgMinx̂
0

0ij
ij

2

2ijij
2

22

1

,}{,x ijij

 


DR
D

x=y and D known

L.t.s

xMin

0
0

2

2ijij






DR

Compute ij per patch 

using the matching pursuit
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Compute D to minimize

using SVD, updating one 
column at a time
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Compute x by

which is a simple averaging 
of shifted patches

K-SVD Image Denoising

D?

Sparse and Redundant Representation Modeling 
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Initial dictionary 
(overcomplete DCT) 64×256

Image Denoising (Gray) [E. & Aharon („06)]

Source

Result 30.829dB

The obtained dictionary after  
10 iterations

Noisy image 

20

 The results of this algorithm compete favorably with 
the state-of-the-art. 

 This algorithm can be extended by using joint sparse 
representation on the patches, introducing a non-local 
force in the denoising, thus leading to improved 
results [Mairal, Bach, Ponce, Sapiro & Zisserman („09)].

 What about EPLL ? …

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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EPLL Improvement [Sulam and E. („15)]

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

L.t.sxyxArgMinx̂
0

0ij
ij

2

2ijij
2

22

1

,}{,x ijij

 


DR
D

 The algorithm we proposed 
updates x only once at the 
end. 

 Why not repeat the whole 
process several times?  

 The rationale: The sparse 
representation model should 
be imposed on the patches of 
the FINAL image. After 
averaging, this is ruined.  

Updates 
the 

Output 
image

Updates the 
sparse repr.

Updates the 
Dictionary
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EPLL Improvement [Sulam and E. („15)]

Sparse and Redundant Representation Modeling 
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By: Michael Elad

 Expected Patch Log Likelihood (EPLL) is an algorithm that came to fix 
this problem [Zoran and Weiss, (‟11)] in the context of a GMM prior. 

 An extension of EPLL to Spars-Land is proposed in [Sulam and E. („15)]. 
The core idea is:

 After the image has been computed, we proceed the iterative process, 
and apply several such overall rounds of updates.

 Sparse coding must be done with a new threshold, based on the 
remaining noise in the image. This is done by evaluating the noise level 
based on the linear projections (disregarding the support detection by the 
OMP). 

 This algorithm leads to state-of-the-art results, with 0.5-1dB improvement 
over the regular K-SVD algorithm shown before.
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EPLL Improvement [Sulam and E. („15)]

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

Noisy image  
has σ=25

KSVD PSNR 
31.42 dB

EPLL PSNR 
31.83 dB
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Denoising (Color) [Mairal, E. & Sapiro („08)]

When turning to handle color images, the 
main difficulty is in defining the relation 
between the color layers – R, G, and B. 

 The solution with the above algorithm is 
simple – consider 3D patches or 8-by-8 
with the 3 color layers, and the dictionary 
will detect the proper relations. 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

Original            Noisy (20.43dB)    Result  (30.75dB)
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Denoising (Color) [Mairal, E. & Sapiro („08)]

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

Original            Noisy (12.77dB)     Result  (29.87dB)

Our experiments lead to state-of-the-art denoising results, 
giving ~1dB better results compared to [Mcauley et. al. („06)]

which implements a learned MRF model (Field-of-Experts)
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Original                         Noisy (σ=25)            Denoised (PSNR=27.62)

Original                         Noisy (σ=15)            Denoised (PSNR=29.98)

Video Denoising [Protter & E. („09)]

When turning to handle video, one could 
improve over the previous scheme in three 
important ways:

1. Propagate the dictionary from one 
frame to another, and thus reduce the 
number of iterations; 

2. Use 3D patches that handle the motion 
implicitly; and

3. Motion estimation and               
compensation can and should be 
avoided [Buades, Col, and Morel („06)].  

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

Our experiments lead to state-of-the-art video 
denoising results, giving ~0.5dB better results on 

average compared to [Boades, Coll & Morel („05)] and 
comparable to [Rusanovskyy, Dabov, & Egiazarian („06)]
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Low-Dosage Tomography [Shtok, Zibulevsky & E. („10)]

Original FBP result with 
high dosage

PSNR=24.63dB

FBP result with low 
dosage (one fifth)

PSNR=22.31dB

Denoising of the 
sinogram and post-
processing (another 
denoising stage) of 
the reconstruction

PSNR=26.06dB

 In Computer-Tomography (CT) reconstruction, an 
image is recovered from a set of its projections. 

 In medicine, CT projections are obtained by X-ray, 
and it typically requires a high dosage of radiation in 
order to obtain a good quality reconstruction. 

 A lower-dosage projection implies a stronger noise 
(Poisson distributed) in data to work with. 

 Armed with sparse and redundant representation 
modeling, we can denoise the data and the final 
reconstruction … enabling CT with lower dosage.
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Image Inpainting – The Basics 

 Assume: the signal x has been created                                        
by x=Dα0 with very sparse α0.

 Missing values in x imply                                                                   
missing rows in this linear                                                    
system. 

 By removing these rows, we get               .

 Now solve

 If α0 was sparse enough, it will be the solution of the  

above problem! Thus, computing Dα0 recovers x perfectly.

0 x D

=x D 

0
Min s.t. x


  D

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Side Note: Compressed-Sensing

 Compressed Sensing is leaning on the very same principal, leading 
to alternative sampling theorems.



 Assume: the signal x has been created by x=Dα0 with very sparse α0.

 Multiply this set of equations by the matrix Q which reduces 
the number of rows.

 The new, smaller, system of equations is

x x   QD Q D  

 If α0 was sparse enough, it will be the sparsest solution of the 

new system, thus, computing Dα0 recovers x perfectly.

 Compressed sensing focuses on conditions for this to happen, 
guaranteeing such recovery.

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Inpainting Formulation [Mairal, E. & Sapiro („08)]

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

ijij

2 2 01

ij ijij2 022
x,{ } , ij

x̂ ArgMin x y x s.t. L


       
D

R DM

The matrix M is a mask 
matrix, obtained by the 
identity matrix with 
some of its rows 
omitted, corresponding 
to the missing samples

=

M x y
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Inpainting Formulation [Mairal, E. & Sapiro („08)]
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ijij

2 2 01

ij ijij2 022
x,{ } , ij

x̂ ArgMin x y x s.t. L
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       
D

R DM

~K-SVD

x=y and D known
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Compute D to minimize

using SVD, updating one 
column at a time

D and ij known

1
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 
   
 

 
   

 





R RM M

R DM

Compute x by

which is a again a simple 
averaging of patches
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Inpainting [Mairal, E. & Sapiro („08)]

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
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RMSE for 
75%
missing 

RMSE 
for 50%
missing 

RMSE for  
25%            
missing

Alg.

29.7019.6114.55No-overlap

18.1811.559.00Overlap

17.7410.058.1K-SVD

For the Peppers image 

This is a more challenging case, 
where the DCT is not a suitable 
dictionary. 
• For Redundant DCT we get 

RMSE=16.13, and 
• For K-SVD (15 iterations) we 

get RMSE=12.74

Original Image       Masked Image

DCT Result          K-SVD Result
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Result

Our experiments lead to state-of-the-art inpainting results.

Original        80% missing

Inpainting [Mairal, E. & Sapiro („08)]

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

Original        80% missing Result
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Inpainting [Mairal, E. & Sapiro („08)]

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

Original        80% missing Result

The same can be done for video, very much like the 
denoising treatment: (i) 3D patches, (ii) no need to 

compute the dictionary from scratch for each frame, and 
(iii) no need for explicit motion estimation
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Our experiments lead to state-of-the-art demosaicing           
results, giving ~0.2dB better results on average,                  

compared to [Chang & Chan („06)]

Demosaicing [Mairal, E. & Sapiro („08)]

 Today‟s cameras are sensing only one                        
color per pixel, leaving the rest for 
interpolated.

 Generalizing the inpainting scheme to                    
handle demosaicing is tricky because                             
of the possibility to learn the mosaic                       
pattern within the dictionary.

 In order to avoid “over-fitting”, we 
handle the demosaicing problem while 
forcing strong sparsity and applying only 
few iterations. 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Image Compression [Bryt and E. („08)]

 The problem: Compressing photo-ID images.

 General purpose methods (JPEG, JPEG2000)                                              
do not take into account the specific family. 

 By adapting to the image-content (PCA/K-SVD),                                       
better results could be obtained.

 For these techniques to operate well, train
dictionaries locally (per patch) using a                                                              
training set of images is required.

 In PCA, only the (quantized) coefficients are stored,                                   
whereas the K-SVD requires storage of the indices                                       
as well.

 Geometric alignment of the image is very helpful                                                
and should be done [Goldenberg, Kimmel, & E. („05)]. 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Image Compression

Training set (2500 images)Detect main features and warp 
the images to a common 

reference (20 parameters) 

O
n
 th

e
 tra

in
in

g
 se

t

Divide the image into disjoint 
15-by-15 patches. For each 

compute mean and dictionary

Per each patch find the 
operating parameters (number 

of atoms L, quantization Q) 

Warp, remove the mean from 
each patch, sparse code using L 

atoms, apply Q, and dewarp

On the        
test image

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Image Compression Results

Results   
for 820

Bytes per    
each file

11.99

10.83

10.93

10.49

8.92

8.71

8.81

7.89

8.61

5.56

4.82

5.58

Original

JPEG

JPEG-2000

Local-PCA

K-SVD

Sparse and Redundant Representation Modeling 
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Results   
for 550

Bytes per    
each file

15.81

14.67

15.30

13.89

12.41

12.57

10.66

9.44

10.27

6.60

5.49

6.36

Image Compression Results

Original

JPEG

JPEG-2000

Local-PCA

K-SVD

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Results   
for 400

Bytes per    
each file

18.62

16.12

16.81

12.30

11.38

12.54

7.61

6.31

7.20

?

?

?

Image Compression Results

Original

JPEG

JPEG-2000

Local-PCA

K-SVD

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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550 bytes  
K-SVD 

results with 
and without 
deblocking

Deblocking the Results [Bryt and E. (`09)]

K-SVD (6.60) K-SVD (11.67)K-SVD (6.45)K-SVD (5.49)

Deblock (6.24) Deblock (11.32)Deblock (6.03)Deblock (5.27)
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Super-Resolution [Zeyde, Protter, & E. („11)]

 Given a low-resolution image, we desire to enlarge it 
while producing a sharp looking result. This problem is 
referred to as “Single-Image Super-Resolution”.

 Image scale-up using bicubic interpolation is far from 
being satisfactory for this task. 

 Recently, a sparse and redundant representation 
technique was proposed [Yang, Wright, Huang, and Ma (‟08)]

for solving this problem, by training a coupled-
dictionaries for the low- and high res. images. 

We extended and improved their algorithms and 
results.



Ideal 
Image

Given Image

SR Result
PSNR=16.95dB

Bicubic
interpolation 

PSNR=14.68dB
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Super-Resolution – Results (1)

The training image: 
717×717 pixels, 
providing a set of 
54,289 training 
patch-pairs.



Given image

Scaled-Up (factor 2:1) using the proposed algorithm, 
PSNR=29.32dB  (3.32dB improvement over bicubic)
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Super-Resolution – Results (2)



The Original                    Bicubic Interpolation                   SR result 
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Super-Resolution – Results (2)



The Original                    Bicubic Interpolation                   SR result 
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Super-Resolution – Results (2)
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Poisson Denoising

peak 0.1

+ =  2

Y X V

V ~ 0,

 

 I

 

 

y
x

i, j
i, j

x
P y | x e

y!

peak max x





peak 100
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Poisson Denoising [Salmon et. al., 2011] [Giryes et. al., 2013]

 Anscombe transform converts Poisson distributed noise into an 

approximately Gaussian one, with variance 1 using the following 

formula [Anscombe, 1948]:

 However, this is of reasonable accuracy only if peak>4.

 For lower peaks (poor illumination), we use the patch-based 

approach with dictionary learning, BUT … in the exponent domain:

   
Anscombe

3
f y 2 y

8

        
   

         0 0

x expx

where L where L

DD
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Poisson Denoising – Results (1)

Original                   Noisy (peak=1)

Dictionary learned atoms:

Result (PSNR=22.59dB) 
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Poisson Denoising – Results (2)

Original            Noisy (peak=2)      Result (PSNR=24.76dB) 

Original           Noisy (peak=0.2)   Result (PSNR=24.16dB) 
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Other Applications?

 Poisson Inpainting

 Blind deblurring

 Audio inpainting

 Dynamic MRI reconstruction

 Clutter reduction in Ultrasound 

 Single image interpolation

 Anomaly detection 

 …
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To Summarize So Far …

We proposed a 
model for 

signals/images 
based on sparse 
and redundant 
representations

What do    
we do?  

Image denoising 
(and many other 

problems in image 
processing) requires 

a model for the 
desired image

Yes! We have seen a group of 
applications where this model is 

showing very good results: 
denoising of bw/color stills/video, 

CT improvement, inpainting, 
super-resolution, and 

compression

Well, does 
this work?

So, what 
next?  

Well, many 
more things …
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Part V                                 
Summary and                

Conclusion

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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Today We Have Seen that …

In our work on we 
cover theoretical, 
numerical, and 

applicative issues 
related to this model 

and its use in practice. 

What do    
we do?  

Sparsity, Redundancy,      
and the use of examples
are important ideas that 
can be used in designing 

better tools in 
signal/image processing 

What            
next?

We keep working on: 

 Improving the model

 Improving the dictionaries 

 Demonstrating on other 
applications 

 … 

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad
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A.M. Bruckstein D.L. Donoho

Sparse and Redundant Representation Modeling 
of Signals – Theory and Applications 
By: Michael Elad

M. Aharon O. Bryt J. Mairal M. Protter R. Rubinstein  J. Shtok R. Giryes Z. Ben-Haim J. Turek R. Zeyde



Image Denoising & Beyond Via Learned 
Dictionaries and Sparse representations
By: Michael Elad

80

If you are Interested …

More on this topic (including the 
slides, the papers, and Matlab
toolboxes) can be found in my 
webpage:  
http://www.cs.technion.ac.il/~elad

A book on these topics was 
published in August 2010.



Thank You all !

Questions?

More on these (including the slides and the relevant papers) can be found in 
http://www.cs.technion.ac.il/~elad


